Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 860
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116225, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520810

RESUMO

The honeycomb magnetic carbons (xFe@HCNs) were prepared by sacrificial template method novelty using polyacrylamide resin (PAAS) as template and ammonium pyrrolidine dithioate/Fe3+ complex (APDC-Fe) as carbon skeleton and metal source. Tetracycline (TC) and copper (Cu2+) as target pollutants were used to investigate the adsorption properties of xFe@HCNs in single or binary TC and Cu2+ systems. The adsorption capacity sequence for TC among the adsorbents was (mmol·g-1): 2Fe@HCNs (0.088) > 8Fe@HCNs (0.061) > HCNs (0.054) > RC (0.036), and for Cu2+ was (mmol·g-1): 2Fe@HCNs (1.120) > 8Fe@HCNs (1.026) > RC (0.792) > HCNs (0.681). 2Fe@HCNs demonstrated notable affinity for adsorbing both TC and Cu2+. Additionally, the influence of hydrochemical factors (i.e., cation species, anion species, and pH) on the adsorption properties of 2Fe@HCNs. Combined with advanced oxidation technology, the regeneration methods of magnetic adsorbent were explored using oxidizing agents (e.g., H2O2 and peroxymonosulfate) as eluents which could increase the adsorption sites of magnetic carbon adsorbents during the regenerating process, which was the novelty of the study. Furthermore, the regeneration mechanisms of H2O2 as eluent were investigated. This study discussed the application and regeneration methods of magnetic adsorbents in water treatment, offering new insights into environmental remediation using magnetic materials.


Assuntos
Compostos Heterocíclicos , Poluentes Químicos da Água , Carbono/química , Cobre/química , Adsorção , Peróxido de Hidrogênio , Poluentes Químicos da Água/química , Tetraciclina/química , Antibacterianos , Fenômenos Magnéticos , Cinética
2.
Environ Pollut ; 347: 123746, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460585

RESUMO

Mitigating pharmaceutical pollution in the global environment is imperative, and tetracycline (TC) is a commonly utilized antibiotic in human and veterinary medicine. The persistent existence of TC highlights the necessity of establishing efficient measures to protect water systems and the environment from detrimental contaminants. Herein, a novel rhubarb seed waste-derived activated carbon-supported photocatalyst (WO3-ZnO/RUAC) was synthesized by combining wet impregnation and ultrasonic methods. The activated carbon (AC) was obtained from rhubarb seed waste for the first time via chemical activation. The function of AC as an electron acceptor and in separating electron-hole pairs was illuminated by characterization analyses that included XRD, FTIR, XPS, SEM, TEM, PL, EIS, TPC, and UV-DRS. Using the response surface methodology-central composite design (RSM-CCD) technique, the synthesis parameters of the composite were systematically optimized. Under ideal conditions, with a TC concentration of 33 mg. L-1, pH of 4.57, irradiation time of 108 min, and catalyst dose of 0.85 g. L-1, the highest degradation efficiency of TC by this composite, achieved 96.5%, and it was reusable for five cycles. Subsequently, trapping tests and electron spin resonance (ESR) analysis were conducted, elucidating that •OH and •O2- radicals played pivotal roles in the photocatalytic degradation of TC. This research offers valuable insights into utilizing the AC-based photocatalyst to degrade pharmaceutical micropollutants effectively.


Assuntos
Óxido de Zinco , Antibacterianos/química , Catálise , Carvão Vegetal , Luz , Preparações Farmacêuticas , Tetraciclina/química , Tungstênio , Óxido de Zinco/química
3.
Environ Pollut ; 348: 123813, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537801

RESUMO

The removal of trace amounts of antibiotics from water environments while simultaneously avoiding potential environmental hazards during the treatment is still a challenge. In this work, green, harmless, and novel asymmetric mesoporous TiO2 (A-mTiO2) was combined with peroxodisulfate (PDS) as active components in a controlled-release material (CRM) system for the degradation of tetracycline (TC) in the dark. The formation of reactive oxygen species (ROS) and the degradation pathways of TC during catalytic PDS activation by A-mTiO2 powder catalysts and the CRMs were thoroughly studied. Due to its asymmetric mesoporous structure, there were abundant Ti3+/Ti4+ couples and oxygen vacancies in A-mTiO2, resulting in excellent activity in the activation of PDS for TC degradation, with a mineralization rate of 78.6%. In CRMs, ROS could first form during PDS activation by A-mTiO2 and subsequently dissolve from the CRMs to degrade TC in groundwater. Due to the excellent performance and good stability of A-mTiO2, the resulting constructed CRMs could effectively degrade TC in simulated groundwater over a long period (more than 20 days). From electron paramagnetic resonance analysis and TC degradation experiments, it was interesting to find that the ROS formed during PDS activation by A-mTiO2 powder catalysts and CRMs were different, but the degradation pathways for TC were indeed similar in the two systems. In PDS activation by A-mTiO2, besides the free hydroxyl radical (·OH), singlet oxygen (1O2) worked as a major ROS participating in TC degradation. For CRMs, the immobilization of A-mTiO2 inside CRMs made it difficult to capture superoxide radicals (·O2-), and continuously generate 1O2. In addition, the formation of sulfate radicals (·SO4-), and ·OH during the release process of CRMs was consistent with PDS activation by the A-mTiO2 powder catalyst. The eco-friendly CRMs had a promising potential for practical application in the remediation of organic pollutants from groundwater.


Assuntos
Antibacterianos , Tetraciclina , Espécies Reativas de Oxigênio , Preparações de Ação Retardada , Pós , Antibacterianos/química , Tetraciclina/química
4.
Int J Biol Macromol ; 264(Pt 1): 130554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431001

RESUMO

Antibiotics have been considered as a group of emerging contaminants for their stable chemical structure, significant pseudo-persistence, and biological toxicity. Tetracycline (TC), as one of the typical antibiotics frequently detected in environmental media, can cause the dissemination and accumulation of antibiotic resistance gene (ARG), ultimately threatening human health and environmental safety. Herein, a novel iron­calcium di-crosslinked graphene oxide/alginate (GO/SA-Fe3+-Ca2+) aerogel was facilely synthesized for TC uptake. It was found that the introduction of GO nanosheets and Fe3+ sites into composite enormously enhanced TC removal. Specifically, TC can be stably and efficiently eliminated over the wide pH range of 5-8. The fitted maximum qe with Liu isotherm model at 308 K reached 1664.05 mg/g, surpassing almost all reported sorbents. The pseudo-second-order kinetic model with chemical sorption characteristics better fitted TC adsorption process, which was endothermic and spontaneous in nature. Multifarious adsorptive sites of GO/SA-Fe3+-Ca2+ synergically participated in TC uptake through multi-mechanisms (e.g., π-π EDA, cation-π bonding, H-bonding, Fe3+-coordination, and electrostatic attraction, etc.). The as-prepared composite showed satisfactory TC removal in several runs of adsorption-desorption operations, high salinity, and model aquaculture wastewater. Moreover, the packed-column could continuously run for >200 h until adsorption saturation was achieved with a dynamic adsorption capacity of 216.69 mg/g, manifesting its scale-up engineering applications. All above merits make as-constructed composite an alternative sorbent for eliminating TC from complex wastewater.


Assuntos
Grafite , Águas Residuárias , Poluentes Químicos da Água , Humanos , Cálcio , Microesferas , Alginatos/química , Poluentes Químicos da Água/química , Antibacterianos/farmacologia , Antibacterianos/química , Tetraciclina/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
5.
Environ Sci Pollut Res Int ; 31(16): 24446-24460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438646

RESUMO

Tetracycline (TC) is a significant group of broad-spectrum antibiotics that are frequently employed in medical health and animal husbandry. However, the problem of TC residues has been increasing globally with the large-scale production and widespread use, posing a serious threat to the human health and ecological environment. In this paper, a green plant-based MOF SU-102 was prepared, and the adsorption characteristics of SU-102 on TC were investigated. SU-102 was columnar crystal with considerable specific surface area and pore structure, and it could adsorb TC quickly and effectively. And compared to SU-102-a, the adsorption rate of TC by SU-102-b has increased by nearly four times. The adsorption reaction was a spontaneous, entropy-gaining, heat-absorbing process. The adsorption mechanisms between SU-102 and TC were π-π interaction and hydrogen bonding. In addition, SU-102 also had considerable photocatalytic properties, and its application in adsorbent desorption treatment effectively solved the problem of secondary pollution.


Assuntos
Poluentes Químicos da Água , Humanos , Adsorção , Poluentes Químicos da Água/análise , Antibacterianos/química , Tetraciclina/química , Temperatura Alta , Cinética
6.
Carbohydr Polym ; 332: 121935, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431402

RESUMO

A novel cellulose composite (denoted as PEI@MMA-1) with porous interconnected structure was prepared by adsorbing methyl cellulose (MC) onto microcrystalline cellulose (MCC) and cross-linking polyethyleneimine (PEI) with MCC by the action of epichlorohydrin, which had the excellent adsorption property, wettability and elasticity. The performances of PEI@MMA-1 composite for removing tetracycline (TC), Cu2+ and coexistent pollutant (TC and Cu2+ mixture) were systematically explored. For single TC or Cu2+ contaminant, the maximum adsorption capacities were 75.53 and 562.23 mg/g at 30 °C, respectively, while in the dual contaminant system, they would form complexes and Cu2+ could play a "bridge" role to remarkably promote the adsorption of TC with the maximum adsorption capacities of 281.66 and 253.58 mg/g for TC and Cu2+. In addition, the adsorption kinetics, isotherms and adsorption mechanisms of single-pollutant and dual-pollutant systems have been thoroughly investigated. Theoretical calculations indicated that the amide group of TC molecule with the assistance of Cu2+ interacted with the hydroxyl group of PEI@MMA-1 composite to enhance the TC adsorption capacity. Cycle regeneration and fixed bed column experiments revealed that the PEI@MMA-1 possessed the excellent stability and utility. Current PEI@MMA-1 cellulose composite exhibited a promising application for remediation of heavy metals and antibiotics coexistence wastewater.


Assuntos
Celulose/análogos & derivados , Cobre , Polietilenoimina/análogos & derivados , Poluentes Químicos da Água , Cobre/química , Adsorção , Poluentes Químicos da Água/química , Tetraciclina/química , Antibacterianos , Íons , Cinética
7.
Chemosphere ; 353: 141503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382718

RESUMO

Recently, water contamination caused by the misuse of antibiotics has become a growing concern. In this study, an economical chitin/calcite composite (CCA) was extracted from crab shell waste, and the effects and mechanisms of its removal of ciprofloxacin (CIP) and tetracycline (TC) from aqueous solution were investigated. The functional groups of chitin and the metal phase of calcite gave CCA the ability to remove antibiotics. Experiments on kinetics, isothermal adsorption, thermodynamics, co-removal, and reusability were conducted to systematically explore the adsorption performances of CCA toward antibiotics. The pseudo-second-order (FSO) and Langmuir models suited the data obtained from experiments best and displayed a good fit for the chemisorption and a certain homogeneity of adsorption sites. At 25 °C, the maximum adsorption capacities (Qmax) toward CIP and TC were 228.86 and 150.76 mg g-1, respectively. The adsorption mechanisms of CCA with TC and CIP are pH dependent since pH can affect the surface charge of CCA and the form in which CIP and TC are existing. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) demonstrated that the keto-O and carboxyl groups of CIP and the carbonyl, hydroxyl, and amido groups of TC could be responsible for the binding with the calcite and the functional groups of chitin through surface complexation, cation bridge and hydrogen bonding.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Carbonato de Cálcio , Quitina , Antibacterianos/química , Tetraciclina/química , Poluentes Químicos da Água/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Environ Manage ; 354: 120344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382432

RESUMO

Coexisting tetracycline (TC), dissolved organic matter (DOM), and metal cations in aqueous environments might form complexes and consequently affect the environmental fate of TC. In this study, the interactions among coexisting humic acid (HA), TC, and Mg(II) in solutions were investigated by equilibrium dialysis batch experiments and nuclear magnetic resonance hydrogen spectroscopy (1H NMR) characterization. In the binary systems, the dimethylamine (4Me2NH+) functional group on the A-ring of TC bound to the oxygen-containing functional groups of HA via hydrogen bond. The solution pH affected the agglomeration morphology and dissociation of the oxygen-containing functional groups of HA as well as protonation and spatial conformation of TC, which in turn affected the HA-TC interactions. The complexation sites and ratio of Mg(II) on TC affect the binding mode in the ternary system. When the TC-Mg(II) complexation ratio is 1:1, the B, C, and D rings of TC preferentially complex with Mg(II), resulting in the change of TC from an extended to a twisted conformation. At this time, Mg(II) had a weaker inhibitory effect on binding affinity between HA and TC. When the complexation ratio was 1:2, the second Mg(II) complexation deactivated the 4Me2NH + on the A ring and further stabilized TC twisted conformation, resulting in a stronger inhibitory effect on the binding of TC to HA. Under acidic conditions, the solution pH mainly caused the difficulty in forming TC-Mg(II) complexes. The inhibitory effect of Mg(II) on the binding between HA and TC is weaker than that under alkaline conditions.


Assuntos
Substâncias Húmicas , Magnésio , Substâncias Húmicas/análise , Tetraciclina/química , Antibacterianos/química , Oxigênio , Concentração de Íons de Hidrogênio , Adsorção
9.
Water Sci Technol ; 89(4): 1082-1093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38423618

RESUMO

The appearance of recalcitrant organic pollutants such as antibiotics in water bodies has gained a lot of attention owing to their adverse effects on organisms and humans. The current study aims to develop a novel approach to eliminate antibiotic tetracycline (TC) from a synthetic aqueous solution based on the advanced oxidation process triggered by MnSO4-catalyzed NaIO4. A single-factor experiment was performed to observe the impact of pH, NaIO4 concentration, and MnSO4 dosage on TC decomposition, and a three-factor, three-level response surface experiment with TC removal rate as the dependent variable was designed based on the range of factors determined from the single-factor experiment. The single-factor experiment revealed that the ranges of pH, NaIO4 concentration, and MnSO4 dosage need to be further optimized. ANOVA (analysis of variance) results showed that the data from the response surface experiment were consistent with the quadratic model with high R2 (0.9909), and the predicted values were very close to the actual values. After optimization by response surface methodology, the optimal condition obtained was pH = 6.7, [NaIO4] = 0.39 mM, and [MnSO4] = 0.12 mM, corresponding to a TC removal of 96.56%. This optimization condition was fully considered to save the dosage of the high-priced chemical NaIO4.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Poluentes Químicos da Água/química , Tetraciclina/química , Antibacterianos/química , Água/química , Purificação da Água/métodos , Adsorção
10.
Environ Sci Pollut Res Int ; 31(13): 20172-20187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369661

RESUMO

Tetracycline (TC) is a widely used antibiotic, and evaluating its interaction with humic substances (HS) that act as a complexing agent in the environment is essential to understanding the availability of this contaminant in the environment. This study evaluated the interaction between HS and TC using different spectroscopic techniques, theoretical studies, and biological assays simulating environmental conditions. TC interacts with HS, preferably by electrostatic forces, with a binding constant of 9.2 × 103 M-1 (30 °C). This process induces conformational changes in the superstructure, preferably in the HS, like protein fraction. Besides, studies using the 8-anilino-1-naphthalene sulfonate (ANS) probe indicated that the antibiotic alters the hydrophobicity degree on HS's surface. Synchronized fluorescence shows that the TC interaction occurs preferentially with the protein-like fraction of soil organic matter (KSV = 26.28 ± 1.03 M-1). The TC epitope was evaluated by 1H NMR and varied according to the pH (4.8 and 9.0) of the medium, as well as the main forces responsible for the stabilization of the HS-TC complex. The molecular docking studies showed that the formation of the HS-TC complex is carried out spontaneously (ΔG = -7.1 kcal mol-1) and is stabilized by hydrogen bonds and electrostatic interactions, as observed in the experimental spectroscopic results. Finally, biological assays indicated that HS influenced the antimicrobial activity of TC. Thus, this study contributed to understanding the dynamics and distribution of TC in the environment and HS's potential in the remediation of antibiotics of this class in natural systems, as these can have adverse effects on ecosystems and human health.


Assuntos
Ecossistema , Substâncias Húmicas , Humanos , Substâncias Húmicas/análise , Simulação de Acoplamento Molecular , Adsorção , Antibacterianos/farmacologia , Antibacterianos/química , Tetraciclina/química
11.
Chemosphere ; 352: 141428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340999

RESUMO

Ferromanganese spinel oxides (MnFe2O4, MFO) have been proven effective in activating persulfate for pollutants removal. However, their inherent high surface energy often leads to agglomeration, diminishing active sites and consequently restricting catalytic performance. In this study, using Al-MCM-41 (MCM) mesoporous molecular sieves derived from natural attapulgite as a support, the MFO/MCM composite was synthesized through dispersing MnFe2O4 nanoparticles on MCM carrier by a simple hydrothermal method, which can effectively activate persulfate (PS) to degrade Tetracycline (TC). The addition of Al-MCM-41 can effectively improve the specific surface area and adsorption performance of MnFe2O4, but also reduce the leaching amount of metal ions. The MFO/MCM composite exhibited superior catalytic reactivity towards PS and 84.3% removal efficiency and 64.7% mineralization efficiency of TC (20 mg/L) was achieved in 90 min under optimized conditions of 0.05 mg/L catalyst dosage, 5 mM PS concentration, room temperature and no adjustment of initial pH. The effects of various stoichiometric MFO/MCM ratio, catalyst dosage, PS concentration, initial pH value and co-existing ions on the catalytic performance were investigated in detail. Moreover, the possible reaction mechanism in MFO-MCM/PS system was proposed based on the results of quenching tests, electron paramagnetic resonance (EPR) and XPS analyses. Finally, major degradation intermediates of TC were detected by liquid chromatography mass spectrometry technologies (LC-MS) and four possible degradation pathways were proposed. This study enhances the design approach for developing highly efficient, environmentally friendly and low-cost catalysts for the advanced treatment process of antibiotic wastewater.


Assuntos
Óxido de Alumínio , Ferro , Compostos de Magnésio , Óxido de Magnésio , Manganês , Óxidos , Compostos de Silício , Dióxido de Silício , Poluentes Químicos da Água , Antibacterianos , Tetraciclina/química , Poluentes Químicos da Água/análise
12.
Chemosphere ; 351: 141219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224750

RESUMO

Degradation of antibiotics through electrocatalytic oxidation has recently been comprehended as a promising strategy in wastewater treatment. Herein, nitrogen and sulphur doped graphene oxide (N,S-rGO) nanosheets were synthesized and employed as metal-free anodic material for electrochemical degradation of antibiotics, viz. metronidazole (MNZ) and tetracycline (TC). The synthesized anodic material was characterized using various spectral techniques and further the electrochemical behaviour of N,S-rGO was thoroughly examined. Thereafter, the N,S-rGO material was then employed as the anode material towards the electrocatalytic degradation of antibiotics. Parameters such as initial concentration of the antibiotics and current densities were varied and their effect towards the degradation of MNZ and TC were probed. Notably, the N,S-rGO based anode has shown impressive removal efficiency of 99% and 98.5%, after 120 min of reaction time for MNZ and TC, respectively, under optimized conditions. The obtained results including the kinetic parameters, removal efficiency and electrical efficiency ensure that the prepared anodic material has huge prospective towards real-time application for removal of antibiotics from water.


Assuntos
Metronidazol , Águas Residuárias , Metronidazol/análise , Carbono , Estudos Prospectivos , Antibacterianos/química , Tetraciclina/química , Metais , Eletrodos
13.
Int J Biol Macromol ; 261(Pt 2): 129829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296134

RESUMO

Three-dimensional interpenetrating and hierarchically porous carbon material is an efficient catalyst support in water remediation and it is still a daunting challenge to establish the relationship between hierarchically porous structure and catalytic degradation performance. Herein, a highly porous silica (SiO2)/cellulose-based carbon aerogel with iron-based catalyst (FexOy) was fabricated by in-situ synthesis, freeze-drying and pyrolysis, where the addition of SiO2 induced the hierarchically porous morphology and three-dimensional interpenetrating sheet-like network with nitrogen doping. The destruction of cellulose crystalline structure by SiO2 and the iron-catalyzed breakdown of glycosidic bonds synergistically facilitated the formation of electron-rich graphite-like carbon skeleton. The unique microstructure is confirmed to be favorable for the diffusion of reactants and electron transport during catalytic process, thus boosting the catalytic degradation performance of carbon aerogels. As a result, the catalytic degradation efficiency of tetracycline under light irradiation by adding only 5 mg of FexOy/SiO2 cellulose carbon aerogels was as high as 90 % within 60 min, demonstrating the synergistic effect of photocatalysis and Fenton reaction. This ingenious structure design provides new insight into the relationship between hierarchically porous structure of carbon aerogels and their catalytic degradation performance, and opens a new avenue to develop cellulose-based carbon aerogel catalysts with efficient catalytic performance.


Assuntos
Carbono , Compostos Heterocíclicos , Carbono/química , Ferro/química , Dióxido de Silício , Celulose/química , Porosidade , Tetraciclina/química , Antibacterianos , Catálise
14.
Water Sci Technol ; 89(1): 212-224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214996

RESUMO

Biochar-activated periodate (PI) is a promising technology toward antibiotic wastewater purification. However, the mechanism of pyrolysis temperature on PI activation efficiency by biochar has not yet been revealed. Herein, this work selected water hyacinth stems as raw materials to prepare biochar with different pyrolysis temperatures (400, 500, 600, and 700 °C), and applied it to degrade tetracycline (TC) wastewater through PI activation. The results show that biochar with a pyrolysis temperature of 700 °C (BC-700) possesses the best TC degradation performance (∼100% within 30 min). Besides, the degradation of TC by BC-700 is less interfered by coexisting anions and water matrix, and exhibits good reusability. Quenching experiments and open circuit voltage tests verified that IO3•, 1O2, and reactive complex BC-PI* are active species involved in TC degradation. In addition, by constructing the relationship between biochar surface properties and degradation rate kobs, it was revealed that the dominant role of pyridinic N in PI adsorption and formation of reactive complexes as well as the promotion of sp2-hybridized carbon in the electron transfer process. This work provides novel insights into the application of biochar in antibiotic wastewater treatment via PI activation.


Assuntos
Eichhornia , Ácido Periódico , Poluentes Químicos da Água , Antibacterianos , Carbono , Águas Residuárias , Elétrons , Carvão Vegetal/química , Tetraciclina/química , Poluentes Químicos da Água/química , Adsorção
15.
Bioresour Technol ; 395: 130357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262542

RESUMO

The disposal of iron-rich sludge by landfill or incineration poses environmental risks and wastes resources. The utilization of iron-rich sludge for magnetic material preparation offers a sustainable and resource-efficient solution for its disposal. Herein, self-endowed magnetic photocatalysts were initially prepared by pyrolysis using iron-rich sludge without any additives. The photocatalysts performance were evaluated for tetracycline degradation, with the highest degradation rate of 95.3 % at a concentration of 10 mg·L-1 (pH = 7) within 5 h being achieved for the photocatalyst prepared at 800 °C. The reactive radical species in the photocatalysis process were confirmed to be •OH and O2•- activated by ferrous oxygen species under light irradiation. Furthermore, quinone-like structures induced bound persistent free radicals, which emerged as the predominant factors influencing 1O2 formation. The employed photocatalyst can be efficiently separated and recovered owing to its magnetism. This work presents an economic solution for antibiotic removal using waste iron-rich sludge.


Assuntos
Ferro , Esgotos , Ferro/química , Tetraciclina/química , Antibacterianos , Oxigênio , Fenômenos Magnéticos , Catálise
16.
Environ Sci Pollut Res Int ; 31(6): 9135-9149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182961

RESUMO

CuS/Bi2O3 composite photocatalyst was prepared by calcination and in situ precipitation, and peroxymonosulfate (PMS) was applied to the degradation of tetracycline (TC) wastewater under visible light. The microscopic morphology, chemical composition, and optical properties of the composites were investigated by characterization means of XRD, FTIR, SEM, XPS, and UV-Vis DRS. The results showed that the introduction of CuS increased the specific surface area of Bi2O3 and increased the visible absorption boundary of Bi2O3 from 455 to 524 nm, which effectively inhibited the complexation of photogenerated electron-hole pairs. The experimental results showed that the introduction of PMS strengthened the removal of TC from the composites, and 95% of TC could be removed under visible light irradiation, and the reaction rate was 8.22 times higher than that of the unspiked PMS, indicating that the BC-15+vis/PMS catalytic system could degrade the pollutants efficiently. The radical capture experiments showed that several radicals, including ·OH, SO4·-, ·O2-, h+, and 1O2, were present in the catalytic system as the main active species to degrade TC, and the mechanism of photocatalytic activation of PMS by Z-type heterostructures of CuS/Bi2O3 composites was proposed. The present study showed that BC-15 has excellent degradation performance and stability, which provides new ideas for the treatment of antibiotic wastewater.


Assuntos
Antibacterianos , Peróxidos , Águas Residuárias , Tetraciclina/química , Luz
17.
J Am Chem Soc ; 146(4): 2757-2768, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38231868

RESUMO

Modulating allosteric coupling offers unique opportunities for biomedical applications. Such efforts can benefit from efficient prediction and evaluation of allostery hotspot residues that dictate the degree of cooperativity between distant sites. We demonstrate that effects of allostery hotspot mutations can be evaluated qualitatively and semiquantitatively by molecular dynamics simulations in a bacterial tetracycline repressor (TetR). The simulations recapitulate the effects of these mutations on abolishing the induction function of TetR and provide a rationale for the different rescuabilities observed to restore allosteric coupling of the hotspot mutations. We demonstrate that the same noninducible phenotype could be the result of perturbations in distinct structural and energetic properties of TetR. Our work underscores the value of explicitly computing the functional free energy landscapes to effectively evaluate and rank hotspot mutations despite the prevalence of compensatory interactions and therefore provides quantitative guidance to allostery modulation for therapeutic and engineering applications.


Assuntos
Proteínas Repressoras , Tetraciclina , Proteínas Repressoras/química , Regulação Alostérica , Tetraciclina/química , Antibacterianos , Mutação
18.
Environ Pollut ; 344: 123305, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38195022

RESUMO

Iron sludge, produced during the drinking water treatment process, can be recycled as potential iron resource to create environmental functional material. In this study, sulfur-iron composites derived from iron sludge (S-Fe composites) was synthesized through sulfidation and carbonization, and used for the tetracycline (TC) removal under aerobic and anoxic conditions. The reactivities of these as-prepared products were strongly depended on pyrolysis temperatures. In particular, sulfidated nanoscale zero-valent iron loaded on carbon (S-nFe0@CIS) carbonized at 800 °C exhibited the highest TC removal efficiency with 86.6% within 30 min at circumneutral pH compared with other S-Fe composites. The crystalline structure of α-Fe0, FeSx and S0 as main active sites in S-nFe0@CIS promoted the degradation of TC. Moreover, the Fe/S molar ratios significantly affected the TC removal rates, which reached the best value as the optimal S/Fe of 0.27. The results illustrated that the optimized extent of sulfidation could facilitate electron transfer from nFe0 towards contaminants and accelerate Fe(III)/Fe(II) cycle in reaction system compared to bared nFe0@CIS. We revealed that removal of TC by S-nFe0@CIS in the presence of dissolved oxygen (DO) is mainly attributed to oxidation, adsorption and reduction pathways. Their contribution to TC removal were 31.6%, 25.2% and 28.8%, respectively. Furthermore, this adsorption-oxygenation with the formation of S-nFe0@CIS-TC* complexes was a surface-mediated process, in which DO was transformed by the structural FeSx on complex surface to •OH with the generation of H2O2 intermediate. The intermediates of TC and toxicity analysis indicate that less toxicity products generated through degradation process. This study provides a new reclamation of iron sludge and offers a new insight into the TC removal by S-nFe0@CIS under aerobic conditions.


Assuntos
Esgotos , Poluentes Químicos da Água , Ferro/química , Peróxido de Hidrogênio , Tetraciclina/química , Antibacterianos/química , Oxigênio , Poluentes Químicos da Água/análise
19.
Environ Pollut ; 345: 123452, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286263

RESUMO

In this research, engineered biochar and hydrochar derived from paddy husk were compared for the adsorption tetracycline (TC) in water effluents. Biochar was produced at three different pyrolysis temperatures (e.g., 250 °C, 300 °C and 350 °C) while hydrochar was produced using three different HTC temperatures (e.g., 180 °C, 200 °C and 220 °C). The adsorptive experiments were performed for both biochar and hydrochar using well-defined experimental conditions: pH (3); initial TC concentration (10 mg/L); adsorbent dosage (1 g/L); and temperature (27 °C) to study their adsorptive performances (qe in mg/g). After selecting the best qe values for both biochar and hydrochar, both materials were modified using 20% H3PO4. A comprehensive scientific evaluation of both engineered biochar (EBC 350) and hydrochar (EHC 220) was performed using adsorption isotherm, adsorption kinetics, rate-limiting, and thermodynamics tests along with their characterization using FTIR and point of zero charge (pzc). The effects of temperature, dosage, and initial TC concentration on the adsorption process were studied for both EBC 350 and EHC 220. Acid activation improved the adsorptive performance of EHC 220 almost four times (from 1.9 to 7.5 mg/g), whereas adsorptive performance of EBC 350 improved 2.4 times from 3.8 to 9.1 mg/g. The best pH for TC adsorption onto EHC 220 was 5, whereas it was 3 for EBC 350. EBC 350 exhibited a good fit with the Freundlich model, whereas EHC 220 followed the Langmuir model. At 100 mg/L TC concentration, EHC 220 exhibited higher qe value (46.9 mg/g) compared to EBC 350 (41.7 mg/g). The Pseudo-first order kinetic model was the best fit for EHC 220 adsorption, whereas Pseudo-second order model was most suitable for EBC 350. The adsorption mechanisms involved in TC adsorption by EHC 220 included hydrogen bonding, hydrophobic effect, and π-π interaction, whereas cation exchange, mass diffusion, and π-π interaction were involved for EBC 350. The results of this study will facilitate the development of cost-effective filters with the incorporation of engineered biochar/engineered hydrochar for the active removal of emerging contaminants, like tetracycline, from wastewater so as to increase its reusable potential.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Tetraciclina/química , Antibacterianos/química , Carvão Vegetal/química , Cinética
20.
Chemosphere ; 352: 141223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228191

RESUMO

This study aims to provide a comprehensive evaluation of the photocatalytic properties and performance of the Cu-Ti-O heterojunction sonochemically embedded in the mesoporous silica matrix. Various characterization analyses and adsorption/photodegradation experiments were performed to assess the potential of the sample for tetracycline (TC) removal. The characterization results indicated that sonication contributes to better dispersion of Ti-Cu-O species, resulting in more uniform particle sizes, stronger semiconductors-silica interaction, and less agglomeration. Furthermore, sonication significantly affected the optical nanocomposite features, leading to an improvement in charge carrier separation and a decrease in the band gap of Ti-Cu-Si (S) by approximately 2.6 eV. Based on the textural results, the ultrasound microjets increased the surface area and pore volume, which facilitate mass transfer and provide suitable adsorption sites for TC molecules. Accordingly, Cu-Ti-Si (S) demonstrated higher adsorption capacity (0.051 g TC/g adsorbent) and eliminated TC significantly faster (0.0054 L.mg-1.min-1) than a non-sonicated sample during 120 min of irradiation, resulting in 2.84 times improvement in the constant rate. In addition, experimental results were accurately modeled using a central composite design in combination with response surface methodology (RSM) and artificial neural networks (ANN) to predict and optimize TC photodegradation. Both RSM and ANN models revealed excellent predictability for TC degradation efficiency, with R2 = 99.47 and 99.71%, respectively. At optimal operational conditions (CTC = 20 ppm, photocatalyst dosage = 1.15 g.L-1, pH = 9, and irradiation time = 100 min), more than 95% and 87% of TC were degraded within the UV (375 W) and simulated solar light (400 W) irradiation periods, respectively. It was observed that the Cu-Ti-Si (S) nanocomposite maintained remarkable stability after four cycles with only a negligible 3% loss of activity, owing to the superior interaction between the bimetallic heterojunction and the silica matrix.


Assuntos
Dióxido de Silício , Titânio , Fotólise , Dióxido de Silício/química , Adsorção , Titânio/química , Tetraciclina/química , Antibacterianos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...